Neurobehavioral Development Measure By Nutritive Sucking Walking and Sleeping Behaiviors

Afza.Malik GDA

Sleeping Behavior and Neuro-Behavioral Development Measure

Neurobehavioral Development Measure By  Nutritive Sucking Walking and Sleeping Behaviors

Neurobehavioral Development and Nutritive Sucking,Exploring the Concept & Framework,Multidisciplinary Framework,Neonatal Behavior, Nutritive Sucking and Impact on Developmental Stages,Clinical ECG Evidences,Sleeping and Waling and Their Neurological Pattern,Sleep Direct Link to Development,Sleep and Walking as an Developmental Parameter,Conclusion.

Neurobehavioral Development and Nutritive Sucking

    Neurobehavioral development is a genetically determined process by which the primitive central nervous system (CNS) achieves maturity in form and function. 

    Neuro development also depends on the environment since CNS development occurs through an “experience expectant” process in which normal species typical experiences enable the CNS to make the structural and functional changes necessary for the next stages of development (Greenough, Black, & Wallace, 1987). ). 

    In order to balance the needs of the present developmental stage and the anticipated needs of subsequent stages, this process is somewhat plastic (Oppenheim, 1981). When an infant is placed in an atypical environment such as a neonatal intensive care unit, ontogenetic adaptation is affected. 

    Although the infant may initially adapt successfully, changes in the trajectory of the infant's neurobehavioral development may be maladaptive at older ages. 

    The effects of this disturbance vary depending on the timing and severity of environmental stresses, individual genetic background, the interaction of genetic background and prenatal history, adaptations made to uterine stresses, and specific neurological insults. 

    Infants probably develop normally when neural plasticity the process by which the brain develops new connections after neural damage-compensates for abnormalities due to any atypical ontogenetic adaptation and neurological insults. 

    Infants exhibit abnormal neurobehavioral development when neural plasticity is not able to compensate, or when compensatory processes result in structural or functional changes that are maladaptive at later ages.

Exploring the Concept & Framework

    The Synactive Model of Neonatal Behavioral Organization provides a framework for exploring the concept of neurobehavioral development. Als (1991) has proposed a dynamic model for assessing infant behavioral organization. 

    She proposed that the behavioral organization displayed by an infant is a reflection of the infant's central nervous system integrity, defined as the potential for the brain to develop normally. The infant's behaviors reflect subsystems of functioning, which include the autonomic, motor, state, attentional or interactive, and regulatory systems. 

    The autonomic system controls physiologic functions that are basic for survival, such as respiration and heart rate. The motor system involves muscle tone, infant movements, and posture. State organization encompasses clarity of states and the pattern of transition from one state to another. 

    The attentional or interactional system can be observed only in the alert state and is indicative of an infant's ability to respond to visual and auditory stimulation. An infant's regulatory system reflects the presence and success of an infant's efforts to achieve and maintain a balance of these other subsystems.

Multidisciplinary Framework

    Another framework used is the perspective of developmental science, a multidisciplinary field that brings together researchers and theorists from psychology, biology, nursing, and other disciplines (Cairns, Elder, & Costello, 1996; Miles & Holditch Davis, 2003). 

    In this perspective, infants are viewed as developing in a continuously ongoing, reciprocal process of interaction with the environment. Infants and their environments form a complex system, consisting of elements that are themselves systems, such as mother and child, interacting together so that the total system shows less variability than the individual elements. 

    Furthermore, plasticity is assumed to be inherent in infants, their families, and the environment. Infants are active participants in their families and the greater environment, constantly changing them at the same time that they are influencing the infant. Interactions, rather than causation, are the focus of this perspective.     

    No action of one element can be said to cause the action of another since interactions between elements are simultaneous and bidirectional. The interactions affecting development of infants are too complex to ever be fully identified, and infants can achieve the same developmental outcomes through different processes.

Neonatal Behavior

    Newborn behavior, which includes sucking, sleeping, and waking, is the infant's primary expression of brain functioning and the critical route for communication with adults. Investigation of these behaviors and their central mechanisms is essential for nursing understanding of the needs of infants and in planning interventions to improve their neurodevelopmental status.

    The idea of evaluating the vitality and central nervous system integrity of a neonate by assessing sucking is not new. Nutritive sucking is initiated in utero and continues to develop in an organized pattern in the early weeks after birth. 

    It involves the integration of multiple sensory and central motor nervous system functions (Wolff, 1968). Sucking behaviors are thought to be an excellent barometer of central nervous system organization. 

    They can be quantified in detailed analysis and are disturbed to various degrees by neurological problems. Wolff describes the study of sucking rhythms to investigate serial order in behavior and development, which has remained among the most resistant to empirical investigation.

    The work of Medoff-Cooper and colleagues (Medoff-Cooper, 1991; Medoff-Cooper, McGrath, & Bilker, 2000; McGrath & Medoff-Cooper, 2001) demonstrated that changes in the pattern of nutritive sucking behaviors can be described as a function of gestational age in healthy preterm and full-term infants. 

    They reported a systematic pattern of gestational related change in sucking behavior that was reflected at each level of temporal analysis, with a strong correlation between increasing maturation and more organized sucking patterns (Medoff-Cooper, 2002). 

    When comparing sucking behaviors at term of 213 extremely early born infants (gestational age ≤ 29 weeks), more mature preterm infants (30-32 weeks gestational age) and newly born full-term infants, feeding behaviors were noted to be a function of gestational age at birth as well as the interaction of maturation and experience. 

    Extremely early born preterm infants were found to demonstrate less competent feeding behaviors than either more mature preterm infants or newly born full term infants.

    Lau, Smith, and Schandler (2003) also found that with increasing post conceptual age (PCA), preterm infants demonstrated significant improvement in feeding performance. 

    They reported a significant relationship between average bolus size and sucking pressures and sucking frequency. Tolerating as well as adapting to increasing bolus size serves as an indicator of maturation in feeding behaviors.

    Gewolb, Bosma, Reynolds, and Vice (2003) used to increase rhythmic stability as the index of maturation of sucking or feeding behaviors. 

    In their comparison of healthy preterm infants and preterm infants with broncho pulmonary dysplasia (BPD), an increase in stability of rhythm and uniformity of wave form morphology was correlated with feeding efficiency and increasing PCA in healthy preterm infants. This relationship was not found to be true in the BPD cohort. 

    They concluded that the poor feeding efficiency may be related to decreased respiratory reserves or may be secondary to nonspecific neurologic impairment.

Nutritive Sucking and Impact on Developmental Stages

    The potential link between nutritive sucking and future developmental problems has been identified throughout the feeding literature. One early study by Burns and colleagues (1987) showed that infants with significant intraventricular hemorrhage were delayed in their ability to achieve a nutritive suck reflex. 

    At week 40 only 75% of the 110 infants demonstrated mature nutritive sucking patterns. Medoff-Cooper and Gennaro (1996) reported that sucking organization or rhythmicity was a far better predictor than neonatal morbidity of developmental outcome at 6 months of age. 

    At 12 months of age, organized feeding patterns at 40-week PCA were significantly correlated with both Mental Developmental and Psychomotor Developmental Index (Medoff-Cooper, 2002).

    Sleeping and waking states are clusters of behaviors that tend to occur together and represent the infant's level of arousal, responsiveness to external stimulation, and central nervous system activation. 

    Three states have been identified in adults: wakefulness, non-REM (rapid eye movement) sleep, and REM sleep. In infants, it is also possible to identify states within waking and states that are transitional between waking and sleeping. 

    Because the electrophysiological patterns associated with sleep in infants are different than those in adults, infant sleep states are usually designated as active and quiet sleep.

Clinical ECG Evidences

    Because of infants' neurological immaturity, EEG and behavioral scoring of states in preterm and full-term infants provide quite similar results. Sleeping and waking states in infants can be validly scored either by EEG or by directly observing infant behaviors.

     Four standardized systems for scoring behavioral observations of sleep wake states are currently being used by nurse researchers: the 6-state system developed by T. Berry Brazelton, the 10-state system of Evelyn Thoman, the 12-state system from Heideliese Als's Assessment of Preterm Infant's Behavior (APIB), and 12 state scoring system based on the Anderson Behavioral State Scale (ABSS) developed by Gene Anderson (see Holditch-Davis, Blackburn, & Vandenberg, 2003). 

    These systems define states in very similar ways and are probably equally useful for clinical purposes. However, the Brazelton system is the most limited for research as it can only be used with infants between 36- and 44-week PCA, and Thomann's is the most flexible as it has been used with 27-week PCA preterm infants through 1-year olds. 

    Sleeping and waking states have widespread physiological effects. The functioning of cardiovascular, respiratory, neurological, endocrine, and gastrointestinal systems differs in different states. Sleeping and waking also affect the infant's ability to respond to stimulation. 

    Thus, infant responses to nurses and parents depend on a great deal on the state the infant is in when the stimulation is begun. Timing routine interventions to occur when the infant is most responsive is an important aspect of current systems of individualized nursing care.

Sleeping and Waling and Their Neurological Pattern

    Studies have indicated that sleep and waking patterns are closely related to neurological status (Thoman, 1982; Halpern, Maclean, & Baumeister, 1995). State patterns of infants with neurological insults differ markedly from those of healthy infants. 

    Abnormal neonatal EEG patterns are associated with severe neurological abnormalities and major neurodevelopmental sequelae during childhood . Also, preterm infants with severe medical illnesses exhibit patterns of sleepwake states that differ from those of healthier preterms, although most of these differences disappear when infants recover (see Holditch-Davis et al., 2003b for references).

Sleep Direct Link to Development

    Sleep and wakefulness may be directly related to brain development. For example, because active sleep is less common in adults than non-REM sleep but is much more common in infants, it has been hypothesized to be necessary for brain development (Roffwarg, Mazio, & Dement, 1966). 

    Also, EEG changes over age in sleep architecture, increasing spectral energies, and greater spectral EEG coherence probably indicate maturational changes in the brain, including synaptogenesis, evolution of neurotransmitter pools, and myelination.

Sleep and Walking as an Developmental Parameter

    Sleep-wake patterns can also be used to predict developmental outcome. Measures of sleep wake states during the preterm period (amount of crying, quality of state organization, sleep cycle length, and amount of night sleep) predict Bayley scores during the 1st year. 

    Developmental changes in the amounts of specific sleep behaviors during the 1st year are related to developmental and health outcomes in the 2nd year. 

    Furthermore, the stability of behavioral sleep wake patterns in the late fetal period and in the 1st, month predicts later development. 

    EEG sleep measures in preterm infants have been related to developmental outcome at up to 8 years. Acoustic characteristics of infant cries have been used to predict developmental outcome in preterm infants and infants exposed to drugs prenatally (see Holditch-Davis et al., 2003b for references).


    In summary, nutritive sucking, a noninvasive and easily measured behavior, appears to be an excellent index of neurodevelopment in preterm infants. 

    Sleeping and waking patterns appear to provide an excellent index of neurodevelopmental status in preterm and full-term infants that can be either scored behaviorally or by EEG.

Post a Comment


Give your opinion if have any.

Post a Comment (0)

#buttons=(Ok, Go it!) #days=(20)

Our website uses cookies to enhance your experience. Check Now
Ok, Go it!